Bissetriz 5y1u2k

Conhecemos como bissetriz a semirreta interna de um ângulo traçada a partir de seu vértice, dividindo-o em dois ângulos congruentes. k44w

Bissetriz é a semirreta interna de um ângulo traçada a partir do vértice deste, dividindo-o em dois ângulos congruentes. As bissetrizes de um triângulo se encontram em um ponto conhecido como incentro, que é o centro da circunferência inscrita nesse polígono. 1jk5e

A partir da bissetriz foram elaborados dois teoremas importantes: o do ângulo interno e o do ângulo externo, desenvolvidos em triângulos que utilizam a proporção para relacionar os lados desse polígono. No plano cartesiano, é possível traçar a bissetriz nos quadrantes ímpares e nos pares.

Leia também: Pontos notáveis de um triângulo

Resumo sobre bissetriz o3p61

  • A bissetriz é uma semirreta que divide um ângulo em dois ângulos congruentes.

  • Podemos traçar as bissetrizes de ângulos internos de triângulos.

  • A partir da bissetriz de um ângulo do triângulo foi desenvolvido o teorema do ângulo interno.

  • Existem duas bissetrizes no plano cartesiano, a dos quadrantes pares e a dos quadrantes ímpares.

O que é bissetriz? 6c62u

Dado um ângulo AOB, chamamos de bissetriz a semirreta OC, que parte do ponto O e divide o ângulo AOB em dois ângulos congruentes.

Demarcação de bissetriz em ângulo
α = β

Na imagem, a semirreta OC é a bissetriz do ângulo AOB.

Como encontrar a bissetriz? 3n3931

Para encontrar a bissetriz, são utilizados como instrumentos uma régua e um como e são seguidos os os a seguir:

  • 1º o: Coloca-se a ponta seca do como sob o vértice O e é feito um arco sobre as semirretas OA e OB.

Representação de arco feito com como sobre as semirretas OA e OB

  • 2º o: Coloca-se a ponta seca do como no ponto de intersecção do arco com a semirreta OA e é feito um arco com o como virado para a parte interna do ângulo.

Representação de arcos feitos com como para delimitar bissetriz

  • 3º o: No ponto de intersecção do arco com a semirreta OB coloca-se a ponta seca do como e repete-se o processo anterior.

Representação de três arcos feitos com como para delimitar bissetriz

  • 4º o: Por fim, ao traçar uma semirreta do vértice do ângulo que a pelos pontos de intersecção entre os arcos, a bissetriz do ângulo é encontrada.

Bissetriz delimitada a partir de arcos feitos com como

Leia também: Baricentro — um dos pontos notáveis de um triângulo

Bissetriz de um triângulo 4h5n5m

Quando são traçadas as bissetrizes dos ângulos internos de um triângulo, podemos encontrar seu ponto notável, conhecido como incentro, que é o ponto de encontro das bissetrizes e também o centro da circunferência inscrita no polígono.

Demarcação de incentro em triângulo
O incentro é o encontro das bissetrizes do triângulo

Teorema da bissetriz interna 2b2s2d

São formados segmentos proporcionais aos lados adjacentes de um triângulo quando traçamos a bissetriz de um de seus ângulos internos.

Bissetriz traçada em triângulo e formação de segmentos proporcionais

Segmentos proporcionais de triângulo

Exemplo:

Dado o triângulo a seguir, encontre o comprimento do lado AC.

Triângulo para determinação de comprimento do lado AC

Resolução:

Aplicando o teorema da bissetriz interna, calcula-se:

Calculando valor de lado de triângulo por meio do teorema da bissetriz interna

  • Videoaula sobre teorema da bissetriz interna 4u5p32

Teorema da bissetriz externa 462v5u

Quando a bissetriz de um dos ângulos externos de um triângulo é traçada, o prolongamento do lado oposto ao ângulo externo forma segmentos proporcionais aos lados adjacentes.

Triângulo para ilustrar teorema da bissetriz externa

Segmentos proporcionais em triângulo

Exemplo:

Encontre o valor de x.

Triângulo para encontrar valor do x por meio do teorema da bissetriz externa

Aplicando o teorema da bissetriz externa, temos que:

Cálculo para encontrar o valor de x em triângulo por meio do teorema da bissetriz externa

Bissetriz dos quadrantes do plano cartesiano 645v1s

É possível traçar a bissetriz no plano cartesiano. Existem duas possibilidades: a bissetriz que a pelos quadrantes pares e a que a pelos quadrantes ímpares.

A bissetriz dos quadrantes ímpares a pelos 1º e 3º quadrantes. Quando a bissetriz corta os quadrantes ímpares, a sua equação é y = x. Logo, os pontos pertencentes à bissetriz dos quadrantes pares possuem abcissa e ordenada iguais.

Bissetriz em quadrantes ímpares

O segundo caso se refere a quando a bissetriz a pelos quadrantes pares, ou seja, pelos 2º e 4º quadrantes. Quando isso ocorre, a equação da reta será y = – x. Logo, os pontos possuem abcissa e ordenada como números simétricos.

Bissetriz em quadrantes pares

Leia também: Teorema fundamental da semelhança — a relação entre uma reta paralela e o lado de um triângulo

Exercícios resolvidos sobre bissetriz 6k1553

Questão 1

Na imagem a seguir, sabendo que OC é a bissetriz do ângulo AOB, podemos afirmar que a medida do ângulo AOB é igual a

Bissetriz sobre ângulo BÔA

A) 15°

B) 30°

C) 35°

D) 60°

E) 70º

Resolução:

Alternativa E

Como OC é bissetriz, temos o seguinte:

3x – 10 = 2x + 5

3x – 2x = 10 + 5

x = 15°

Sabe-se que x = 15 e que o valor da metade do ângulo AOB é igual a 2x + 5. Substituindo x por 15, obtém-se:

2 · 15 + 5

30 + 5

35°

A metade do ângulo AOB é de 35°. Logo, o ângulo AOB é igual ao dobro de 35°, ou seja,

AOC = 35 · 2 = 70°.

Questão 2

Em um triângulo foram traçadas as suas três bissetrizes internas. Após traçá-las, foi possível perceber que elas se encontram em um ponto. O ponto de encontro das bissetrizes de um triângulo é conhecido como

A) baricentro.

B) incentro.

C) circuncentro.

D) ortocentro.

Resolução:

Alternativa B

Quando as bissetrizes internas de um triângulo são traçadas, o ponto de encontro delas é conhecido como incentro.

 

Por Raul Rodrigues de Oliveira
Professor de Matemática


Fonte: Brasil Escola - /matematica/bissetriz.htm